The electroless nickel plating of catalytically graphitized electrospun carbon nanofibers

Abstract

Catalytically graphitized electrospun carbon nanofibers were plated with nickel using a commercial electroless bath for the first time. The nanofiber fabrication process was performed in the presence of nickel as the graphitization catalyst at a temperature of 1400 °C. Raman spectroscopy and X-ray diffraction studies confirmed the achievement of a satisfactory degree of graphitization for the carbon nanofibers. After sensitization and activation processes, the nanofibers were submerged for 20 min in the electroless bath at a temperature of 45 °C and a pH value of 9. Results from scanning electron microscopy and X-ray diffraction showed that a pure, crystalline and uniform nickel coating of 186 nm thickness was formed on the surface of the nanofibers.

The electroless nickel plating of catalytically graphitized electrospun carbon nanofibers

Abstract

Catalytically graphitized electrospun carbon nanofibers were plated with nickel using a commercial electroless bath for the first time. The nanofiber fabrication process was performed in the presence of nickel as the graphitization catalyst at a temperature of 1400 °C. Raman spectroscopy and X-ray diffraction studies confirmed the achievement of a satisfactory degree of graphitization for the carbon nanofibers. After sensitization and activation processes, the nanofibers were submerged for 20 min in the electroless bath at a temperature of 45 °C and a pH value of 9. Results from scanning electron microscopy and X-ray diffraction showed that a pure, crystalline and uniform nickel coating of 186 nm thickness was formed on the surface of the nanofibers.